Информационно развлекательный портал
Поиск по сайту

Значок целых чисел. Целые числа. Определение. Операции над целыми числами

Что значит целое число

Итак, рассмотрим, какие числа называют целыми.

Таким образом, целыми будут обозначаться такие числа: $0$, $±1$, $±2$, $±3$, $±4$ и т.д.

Множество натуральных чисел есть подмножеством множества целых чисел, т.е. любое натуральное будет являться целым числом, но не любое целое является натуральным числом.

Целые положительные и целые отрицательные числа

Определение 2

плюс .

Числа $3, 78, 569, 10450$ – целые положительные числа.

Определение 3

являются целые числа со знаком минус .

Числа $−3, −78, −569, -10450$ – целые отрицательные числа.

Замечание 1

Число ноль не относится ни к целым положительным, ни к целым отрицательным числам.

Целыми положительными числами являются целые числа, большие нуля.

Целыми отрицательными числами являются целые числа, меньшие нуля.

Множество натуральных целых чисел являет собой множество всех целых положительных чисел, а множество всех противоположных натуральным числам являет собой множество всех целых отрицательных чисел.

Целые неположительные и целые неотрицательные числа

Все целые положительные числа и число нуль называются целыми неотрицательными числами .

Целыми неположительными числами являются все целые отрицательные числа и число $0$.

Замечание 2

Таким образом, целым неотрицательным числом являются целые числа, большие нуля или равные нулю, а целым неположительным числом – целые числа, меньшие нуля или равные нулю.

Например, целые неположительные числа: $−32, −123, 0, −5$, а целые неотрицательные числа: $54, 123, 0, 856 342.$

Описание изменения величин при помощи целых чисел

Целые числа применяются для описания изменения числа каких-либо предметов.

Рассмотрим примеры.

Пример 1

Пусть в магазине продается какое-то число наименований товара. Когда в магазин поступит $520$ наименований товаров, то число наименований товара в магазине увеличится, а число $520$ показывает изменение числа в положительную сторону. Когда в магазине продастся $50$ наименований товара, то число наименований товара в магазине уменьшится, а число $50$ будет выражать изменение числа в отрицательную сторону. Если в магазин не будут ни привозить, ни продавать товар, то число товара будет оставаться неизменным (т.е. можно говорить о нулевом изменении числа).

В приведенном примере изменение числа товара описывается с помощью целых чисел $520$, $−50$ и $0$ соответственно. Положительное значение целого числа $520$ указывает на изменение числа в положительную сторону. Отрицательное значение целого числа $−50$ указывает на изменение числа в отрицательную сторону. Целое число $0$ указывает на неизменность числа.

Целые числа удобно использовать, т.к. не нужно явное указание на увеличение числа или уменьшение, – знак целого числа указывает на направление изменения, а значение – на количественное изменение.

С помощью целых чисел можно выразить не только изменение количества, но и изменение любой величины.

Рассмотрим пример изменения стоимости товара.

Пример 2

Повышение стоимости, например, на $20$ рублей выражается с помощью положительного целого числа $20$. Понижение стоимости, например, на $5$ рублей описывается с помощью отрицательного целого числа $−5$. Если изменений стоимости нет, то такое изменение определяется с помощью целого числа $0$.

Отдельно рассмотрим значение отрицательных целых чисел как размера долга.

Пример 3

Например, у какого-либо человека есть $5 000$ рублей. Тогда с помощью целого положительного числа $5 000$ можно показать количество рублей, которые у него есть. Человек должен оплатить квартплату в размере $7 000$ рублей, но у него таких денег нет, в таком случае подобная ситуация описывается отрицательным целым числом $−7 000$. В таком случае человек имеет $−7 000$ рублей, где «–» указывает на долг, а число $7 000$ показывает количество долга.

Это числа, которые используются при счете: 1, 2, 3... и т.д.

Ноль не является натуральным.

Натуральные числа принято обозначать символом N .

Целые числа. Положительные и отрицательные числа

Два числа отличающиеся друг от друга только знаком, называются противоположными , например, +1 и -1, +5 и -5. Знак "+" обычно не пишут, но предполагают, что перед числом стоит "+". Такие числа называются положительными . Числа, перед которыми стоит знак "-", называются отрицательными .

Натуральные числа, противоположные им и ноль называют целыми числами. Множество целых чисел обозначают символом Z .

Рациональные числа

Это конечные дроби и бесконечные периодические дроби. Например,

Множество рациональных чисел обозначается Q . Все целые числа являются рациональными.

Иррациональные числа

Бесконечная непериодическая дробь называется иррациональным числом. Например:

Множество иррациональных чисел обозначается J .

Действительные числа

Множество всех рациональных и всех иррациональных чисел называется множеством действительных (вещественных) чисел.

Действительные числа обозначаются символом R .

Округление чисел

Рассмотрим число 8,759123... . Округлить до целой части означает записать лишь ту часть числа, которая находится до запятой. Округлить до десятых означает записать целую часть и после запятой одну цифру; округлить до сотых - после запятой две цифры; до тысячных - три цифры и т.д.

Число - важнейшее математическое понятие, меняющееся на протяжении веков.

Первые представления о числе возникли из счета людей, животных, плодов, различных изделий и пр. Результатом являются натуральные числа: 1, 2, 3, 4, ...

Исторически первым расширением понятия числа является присоединение к натуральному числу дробных чисел.

Дробью называется часть (доля) единицы или несколько равных ее частей.

Обозначаются: , где m, n - целые числа;

Дроби со знаменателем 10n , где n - целое число, называются десятичными : .

Среди десятичных дробей особое место занимают периодические дроби : - чистая периодическая дробь, - смешанная периодическая дробь.

Дальнейшее расширение понятия числа вызвано уже развитием самой математики (алгебры). Декарт в XVII в. вводит понятие отрицательного числа .

Числа целые (положительные и отрицательные), дробные (положительные и отрицательные) и нуль получили название рациональных чисел . Всякое рациональное число может быть записано в виде дроби конечной и периодической.

Для изучения непрерывно изменяющихся переменных величин оказалось необходимым новое расширение понятия числа - введение действительных (вещественных) чисел - присоединением к рациональным числам иррациональных: иррациональные числа - это бесконечные десятичные непериодические дроби.

Иррациональные числа появились при измерении несоизмеримых отрезков (сторона и диагональ квадрата), в алгебре - при извлечении корней , примером трансцендентного, иррационального числа являются π, e .

Числа натуральные (1, 2, 3,...), целые (..., –3, –2, –1, 0, 1, 2, 3,...), рациональные (представимые в виде дроби) и иррациональные (не представимые в виде дроби) образуют множество действительных (вещественных) чисел.

Отдельно в математике выделяют комплексные числа.

Комплексные числа возникают в связи с задачей решения квадратных для случая D < 0 (здесь D – дискриминант квадратного уравнения). Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.

Комплексные числа записываются в виде: z=a + bi . Здесь a и b действительные числа , а i мнимая единица, т. e . i 2 = –1. Число a называется абсциссой , a b – ординатой комплексного числа a + bi . Два комплексных числа a + bi и a – bi называются сопряжёнными комплексными числами.

Свойства:

1. Действительное число а может быть также записано в форме комплексного числа: a + 0i или a – 0i . Например 5 + 0i и 5 – 0i означают одно и то же число 5 .

2. Комплексное число 0+ bi называется чисто мнимым числом . Запись bi означает то же самое, что и 0+ bi .

3. Два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В противном случае комплексные числа не равны.

Действия:

Сложение. Суммой комплексных чисел a + bi и c + di называется комплексное число (a + c ) + (b + d )i . Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Вычитание. Разностью двух комплексных чисел a + bi (уменьшаемое) и c + di (вычитаемое) называется комплексное число (a – c ) + (b – d )i . Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

Умножение. Произведением комплексных чисел a + bi и c + di называется комплексное число:

(ac – bd ) + (ad + bc )i . Это определение вытекает из двух требований:

1) числа a + bi и c + di должны перемножаться, как алгебраические двучлены,

2) число i обладает основным свойством: i 2 = –1.

П р и м е р. (a+ bi )(a – bi )= a 2 + b 2 . Следовательно, произведение двух сопряжённых комплексных чисел равно действительному положительному числу.

Деление. Разделить комплексное число a + bi (делимое) на другое c + di (делитель) - значит найти третье число e + f i (чатное), которое будучи умноженным на делитель c + di , даёт в результате делимое a + bi . Если делитель не равен нулю, деление всегда возможно.

П р и м е р. Найти (8 + i ) : (2 – 3i ) .

Р е ш е н и е. Перепишем это отношение в виде дроби:

Умножив её числитель и знаменатель на 2 + 3i и выполнив все преобразования, получим:

Задание 1: Сложите, вычтите, умножьте и разделите z 1 на z 2

Извлечение корня квадратного: Реши уравнение x 2 = -a. Для решения данного уравнения мы вынуждены воспользоваться числами нового типа – мнимые числа . Таким образом, мнимым называется число, вторая степень которого является числом отрицательным . Согласно этому определению мнимых чисел мы можем определить и мнимую единицу :

Тогда для уравнения x 2 = – 25 мы получаем два мнимых корня:

Задание 2: Реши уравнение:

1) x 2 = – 36; 2) x 2 = – 49; 3) x 2 = – 121

Геометрическое представление комплексных чисел. Действительные числа изображаются точками на числовой прямой:

Здесь точка A означает число –3, точка B –число 2, и O –ноль. В отличие от этого комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b . Эта система координат называется комплексной плоскостью .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Модуль комплексного числа a + bi обозначается | a + bi | или) буквой r и равен:

Сопряжённые комплексные числа имеют одинаковый модуль.

Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат По осям нужно задать размерность, отмечаем:

е
диницу по действительной оси; Re z

мнимую единицу по мнимой оси. Im z

Задание 3. Построить на комплексной плоскости следующие комплексные числа: , , , , , , ,

1. Числа точные и приближенные. Числа, с которыми мы встречаемся на практике, бывают двух родов. Одни дают истинное значение величины, другие - только приблизительное. Первые называют точными, вторые - приближенными. Чаще всего удобно пользоваться приближенным числом вместо точного, тем более, что во многих случаях точное число вообще найти невозможно.

Так, если говорят, что в классе есть 29 учеников, то число 29 - точное. Если же говорят, что расстояние от Москвы до Киева равно 960 км, то здесь число 960 - приближенное, так как, с одной стороны, наши измерительные инструменты не абсолютно точны, с другой стороны, сами города имеют некоторую протяженность.

Результат действий с приближенными числами есть тоже приближенное число. Выполняя некоторые действия над точными числами (деление, извлечение корня), можно также получить приближенные числа.

Теория приближенных вычислений позволяет:

1) зная степень точности данных, оценить степень точности результатов;

2) брать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата;

3) рационализировать процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точность результата.

2. Округление. Одним из источников получения приближенных чисел является округление. Округляют как приближенные, так и точные числа.

Округлением данного числа до некоторого его разряда называют замену его новым числом, которое получается из данного путем отбрасывания всех его цифр, записанных правее цифры этого разряда, или путем замены их нулями. Эти нули обычно подчеркивают или пишут их меньшими. Для обеспечения наибольшей близости округленного числа к округляемому следует пользоваться такими правилами: чтобы округлить число до единицы определенного разряда, надо отбросить все цифры, стоящие после цифры этого разряда, а в целом числе заменить их нулями. При этом учитывают следующее:

1) если первая (слева) из отбрасываемых цифр менее 5, то последнюю оставленную цифру не изменяют (округление с недостатком);

2) если первая отбрасываемая цифра больше 5 или равна 5, то последнюю оставленную цифру увеличивают на единицу (округление с избытком).

Покажем это на примерах. Округлить:

а) до десятых 12,34;

б) до сотых 3,2465; 1038,785;

в) до тысячных 3,4335.

г) до тысяч 12375; 320729.

а) 12,34 ≈ 12,3;

б) 3,2465 ≈ 3,25; 1038,785 ≈ 1038,79;

в) 3,4335 ≈ 3,434.

г) 12375 ≈ 12 000; 320729 ≈ 321000.

3. Абсолютная и относительная погрешности. Разность между точным числом и его приближенным значением называется абсолютной погрешностью приближенного числа. Например, если точное число 1,214 округлить до десятых, получим приближенное число 1,2. В данном случае абсолютная погрешность приближенного числа 1,2 равна 1,214 - 1,2, т.е. 0,014.

Но в большинстве случаев точное значение рассматриваемой величины неизвестно, а только приближенное. Тогда и абсолютная погрешность неизвестна. В этих случаях указывают границу, которую она не превышает. Это число называют граничной абсолютной погрешностью. Говорят, что точное значение числа равно его приближенному значению с погрешностью меньшей, чем граничная погрешность. Например, число 23,71 есть приближенное значение числа 23,7125 с точностью до 0,01, так как абсолютная погрешность приближения равна 0,0025 и меньше 0,01. Здесь граничная абсолютная погрешность равна 0,01 * .

Граничную абсолютную погрешность приближенного числа а обозначают символом Δa . Запись

x a (±Δa )

следует понимать так: точное значение величины x находится в промежутке между числамиа – Δa иа + Δа , которые называют соответственно нижней и верхней границейх и обозначают НГx ВГх .

Например, если x ≈ 2,3 (±0,1), то 2,2<x < 2,4.

Наоборот, если 7,3< х < 7,4, тох ≈ 7,35 (±0,05). Абсолютная или граничная абсолютная погрешность не характеризует качество выполненного измерения. Одна и та же абсолютная погрешность может считаться значительной и незначительной в зависимости от числа, которым выражается измеряемая величина. Например если измеряем расстояние между двумя городами с точностью до одного километра, то такая точность вполне достаточна для этого изменения в то же время при измерении расстояния между двумя домами одной улицы такая точность будет недопустимой. Следовательно, точность приближенного значения величины зависит не только от величины абсолютной погрешности, но и от значения измеряемой величины. Поэтому мерой точности служит относительная погрешность.

Относительной погрешностью называется отношение абсолютной погрешности к величине приближенного числа. Отношение граничной абсолютной погрешности к приближенному числу называют граничной относительной погрешностью; обозначают ее так: . Относительную и граничную относительную погрешности принято выражать в процентах. Например, если измерения показали, что расстояниех между двумя пунктами больше 12,3 км, но меньше 12,7 км, то за приближенное значение его принимают среднее арифметическое этих двух чисел, т.е. их полусумму, тогда граничная абсолютная погрешность равна полуразности этих чисел. В данном случаех ≈ 12,5 (±0,2). Здесь граничная абсолютная погрешность равна 0,2 км, а граничная относительная

Для того чтобы эффективно выполнять любую работу, нужны инструменты, чтобы копать, нужна лопата или экскаватор; чтобы думать, нужны слова. Числа - это инструменты, позволяющие работать с количествами.

Кажется, что все мы знаем, что такое число: 1, 2, 3… Но давайте поговорим о числах, как об инструментах.

Возьмем три предмета: яблоко, воздушный шар, Землю (Рис. 1). Что у них общего? Форма - это все шары.

Рис. 1. Иллюстрация к примеру

Возьмем три других предмета (Рис. 2). Что у них общего? Цвет - все они синие.

Рис. 2. Иллюстрация к примеру

Возьмем теперь три множества: три автомобиля, три яблока, три карандаша (Рис. 3). Что у них общего? Количество - их по три.

Рис. 3. Иллюстрация к примеру

Мы можем на каждую машину положить по яблоку, а в каждое яблоко воткнуть по карандашу (Рис. 4). Общее свойство этих множеств - количество элементов.

Рис. 4. Сравнение множеств

Однако для решения задач мало натуральных чисел, поэтому ввели еще и отрицательные, рациональные, иррациональные и др. Математика (особенно та её часть, которая изучается в школе) - это своеобразный механизм по переработке знаков.

Возьмем, например, две кучи палочек, в одной семнадцать штук, а в другой - двадцать пять (Рис. 5). Как узнать, сколько всего палочек в обеих кучах?

Рис. 5. Иллюстрация к примеру

Если нет никакого механизма, то непонятно: можно только сложить палочки в одну кучу и пересчитать.

А вот если количества палочек записать в привычной нам десятичной системе ( и ), то можно использовать механизмы для сложения. Например, мы умеем складывать числа в столбик (Рис. 6): .

Рис. 6. Сложение в столбик

Также мы не сможем сложить числа, записанные так: триста семьдесят четыре плюс четыреста восемьдесят пять. А вот если записать числа в десятичной системе, то для сложения есть алгоритм - сложение в столбик (Рис. 7): .

Рис. 7. Сложение в столбик

Если есть автомобиль, то стоит построить гладкую дорогу, вместе они эффективны. Аналогично: если есть самолет, то нужен аэродром. То есть сам механизм и окружающая инфраструктура связаны - по отдельности они гораздо менее эффективны.

В данном случае есть инструмент - числа, записываемые в позиционной системе, и для них придумана инфраструктура: алгоритмы для выполнения различных действий, например, сложения в столбик.

Числа, записанные в десятичной позиционной системе, вытеснили другие (римские и др.) именно потому, что для работы с ними придумали эффективные и простые алгоритмы.

Рассмотрим подробнее десятичную позиционную систему. Есть две основные идеи, которые лежат в её основе (благодаря которым она и получила своё название).

1. Десятичность : мы считаем группами, а именно десятками.

2. Позиционность : вклад цифры в число зависит от ее позиции. Например, , : числа разные, хотя состоят из одинаковых цифр.

Эти две идеи помогли создать удобную систему, в ней легко выполнять действия и записывать числа, так как у нас есть ограниченный набор символов (в данном случае цифр) для записи бесконечного количества чисел.

Подчеркнем важность технологии на таком примере. Предположим, что нужно перенести тяжелый груз. Если использовать ручной труд, то все будет зависеть от того, насколько сильный человек несёт груз: один справится, другой - нет.

Изобретение технологии (например, автомобиля, в котором можно перевезти этот груз) выравнивает возможности людей: за рулём может сидеть хрупкая девушка или тяжелоатлет, но оба они смогут одинаково эффективно справиться с задачей перемещения груза. То есть технологии можно научить любого, а не только специалиста.

Сложение и умножение в столбик - тоже технология. Работа с числами, записанными в римской системе счисления, - сложная задача, это умели делать только специально обученные люди. Складывать и умножать числа в десятичной системе умеет любой четвероклассник.

Как мы уже говорили, люди изобрели разные числа, и все они нужны. Следующим (после натуральных) важным изобретением являются отрицательные числа. С помощью отрицательных чисел считать стало проще. Как так получилось?

Если мы из большего отнимаем меньшее, то потребности в отрицательных числах нет: понятно, что в большем числе содержится меньшее. Но оказалось, что стоит ввести отрицательные числа как отдельный объект. Его нельзя увидеть, потрогать, но он полезен.

Рассмотрим такой пример: Можно делать вычисления в другом порядке: , тогда не возникает никакой проблемы, нам достаточно натуральных чисел.

Но иногда бывает необходимость выполнять действия последовательно. Если у нас на счету заканчиваются деньги, то нам дают кредит. Пусть у нас было рублей, а мы потратили на разговоры. На счете не хватает рублей, это удобно записать с помощью знака минус, так как если мы их вернем, то на счету будет : . Эта идея лежит в основе изобретения такого инструмента, как отрицательные числа.

В жизни мы часто работаем с понятиями, которые нельзя потрогать: радость, дружба и т.д. Но это не мешает нам их понимать и анализировать. Можно сказать, что это просто придуманные вещи. Действительно так и есть, но они помогают людям что-то делать. Так же автомобиль придуман человеком, но он помогает нам перемещаться. Числа тоже придуманы человеком, но они помогают решать задачи.

Возьмем такой объект, как часы (Рис. 8). Если оттуда вытащить деталь, то не ясно, что это и зачем нужно. Без часов эта деталь не существует. Так и отрицательное число существует внутри математики.

Рис. 8. Часы

Часто учителя стараются указать, что такое отрицательное число. Приводят в пример отрицательную температуру (Рис. 9).

Рис. 9. Отрицательная температура

Но это лишь название, обозначение, а не само число. Можно было ввести другую шкалу, где такая же температура будет, например, положительной. В частности, отрицательные температуры по шкале Цельсия в шкале Кельвина выражаются положительными числами: .

То есть отрицательного количества в природе не существует. Однако числа используют не только для выражения количества. Вспомним основные функции числа.

Итак, мы поговорили про натуральные и целые числа. Число - это удобный инструмент, который можно использовать для решения различных задач. Конечно, для тех кто работает внутри математики, числа являются объектами. Как для тех кто делает плоскогубцы, они также являются объектами, а не инструментами. Мы же будем рассматривать числа как инструмент, который позволяет нам думать и работать с количествами.