Информационно развлекательный портал
Поиск по сайту

Определение относительной диэлектрической проницаемости среды. Что такое диэлектрическая проницаемость

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина ε, характеризующая поляризацию диэлектриков под действием электрического поля напряжённостью Е. Диэлектрическая проницаемость входит в Кулона закон как величина, показывающая, во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Ослабление взаимодействия происходит вследствие экранирования свободных зарядов связанными, образующимися в результате поляризации среды. Связанные заряды возникают вследствие микроскопического пространственного перераспределения зарядов (электронов, ионов) в электрически нейтральной в целом среде.

Связь между векторами поляризации Р, напряжённости электрического поля Е и электрической индукции D в изотропной среде в системе единиц СИ имеет вид:

где ε 0 - электрическая постоянная. Величина диэлектрической проницаемости ε зависит от структуры и химического состава вещества, а также от давления, температуры и других внешних условий (табл.).

Для газов её величина близка к 1, для жидкостей и твёрдых тел изменяется от нескольких единиц до нескольких десятков, у сегнетоэлектриков может достигать 10 4 . Такой разброс значений ε обусловлен различными механизмами поляризации, имеющими место в разных диэлектриках.

Классическая микроскопическая теория приводит к приближённому выражению для диэлектрической проницаемости неполярных диэлектриков:

где n i - концентрация i-го сорта атомов, ионов или молекул, α i - их поляризуемость, β i - так называемый фактор внутреннего поля, обусловленный особенностями структуры кристалла или вещества. Для большинства диэлектриков с диэлектрической проницаемостью, лежащей в пределах 2-8, β = 1/3. Обычно диэлектрическая проницаемость практически не зависит от величины приложенного электрического поля вплоть до электрического пробоя диэлектрика. Высокие значения ε некоторых оксидов металлов и других соединений обусловлены особенностями их структуры, допускающей под действием поля Е коллективное смещение подрешёток положительных и отрицательных ионов в противоположных направлениях и образование значительных связанных зарядов на границе кристалла.

Процесс поляризации диэлектрика при наложении электрического поля развивается не мгновенно, а в течение некоторого времени τ (времени релаксации). Если поле Е изменяется во времени t по гармоническому закону с частотой ω, то поляризация диэлектрика не успевает следовать за ним и между колебаниями Р и Е появляется разность фаз δ. При описании колебаний Р и Е методом комплексных амплитуд диэлектрическую проницаемость представляют комплексной величиной:

ε = ε’ + iε",

причём ε’ и ε" зависят от ω и τ, а отношение ε"/ε’ = tg δ определяет диэлектрические потери в среде. Сдвиг фаз δ зависит от соотношения τ и периода поля Т = 2π/ω. При τ << Т (ω<< 1/τ, низкие частоты) направление Р изменяется практически одновременно с Е, т. е. δ → 0 (механизм поляризации «включён»). Соответствующее значение ε’ обозначают ε (0) . При τ >> Т (высокие частоты) поляризация не успевает за изменением Ε, δ → π и ε’ в этом случае обозначают ε (∞) (механизм поляризации «отключён»). Очевидно, что ε (0) > ε (∞) , и в переменных полях диэлектрическая проницаемость оказывается функцией ω. Вблизи ω = l/τ происходит изменение ε’ от ε (0) до ε (∞) (область дисперсии), а зависимость tgδ(ω) проходит через максимум.

Характер зависимостей ε’(ω) и tgδ(ω) в области дисперсии определяется механизмом поляризации. В случае ионной и электронной поляризаций при упругом смещении связанных зарядов изменение Р(t) при ступенчатом включении поля Е имеет характер затухающих колебаний и зависимости ε’(ω) и tgδ(ω) называются резонансными. В случае ориентационной поляризации установление Р(t) носит экспоненциальный характер, а зависимости ε’(ω) и tgδ(ω) называются релаксационными.

Методы измерения диэлектрической поляризации основаны на явлениях взаимодействия электромагнитного поля с электрическими дипольными моментами частиц вещества и различны для разных частот. В основе большинства методов при ω ≤ 10 8 Гц лежит процесс зарядки и разрядки измерительного конденсатора, заполненного исследуемым диэлектриком. При более высоких частотах используются волноводные, резонансные, мультичастотные и другие методы.

В некоторых диэлектриках, например сегнетоэлектриках, пропорциональная зависимость между Р и Ε [Ρ = ε 0 (ε ‒ 1)Е] и, следовательно, между D и Е нарушается уже в обычных, достигаемых на практике электрических полях. Формально это описывается как зависимость ε(Ε) ≠ const. В этом случае важной электрической характеристикой диэлектрика является дифференциальная диэлектрическая проницаемость:

В нелинейных диэлектриках величину ε диф измеряют обычно в слабых переменных полях при одновременном наложении сильного постоянного поля, а переменную составляющую ε диф, называют реверсивной диэлектрической проницаемостью.

Лит. смотри при ст. Диэлектрики.

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ

Диэлектрическая проницаемость среды ε c есть величина, характеризующая влияние среды на силы взаимодействия электрических полей. Различные среды имеют различные значения ε c .

Абсолютная диэлектрическая проницаемость вакуума называется электрической постоянной ε 0 =8,85 10 -12 ф/м.

Отношение абсолютной диэлектрической проницаемости среды к электрической постоянной называют относительной диэлектрической проницаемостью

т.е. относительная диэлектрическая проницаемость ε - это величина показывающая, во сколько раз абсолютная диэлектрическая проницаемость среды больше электрической постоянной. Величина ε размерности не имеет.

Таблица 1

Относительная диэлектрическая проницаемость изоляционных материалов

Как видно из таблицы у большинства диэлектриков ε = 1-10и мало зависит от электрических условий и температуры среды.

Существует группа диэлектриков, называемых сегнетоэлектриками , в которых ε может достигать значений до 10 000, причем ε сильно зависит от внешнего поля и температуры. К сегнетоэлектрикам относятся титанат бария, титанат свинца, сегнетова соль и др.

Контрольные вопросы

1. Каково строение атома алюминия, меди?

2. В каких единицах измеряются размеры атомов и их частиц?

3. Какой электрический заряд имеют электроны?

4. Почему в обычном состоянии вещества электрически нейтральны?

5. Что называется электрическим полем и как оно условно изображается?

6. От чего зависит сила взаимодействия между электрическими зарядами?

7. Почему одни материалы являются проводниками, а другие изоляторами?

8. Какие материалы относятся к проводника, а какие к изоляторам?

9. Как можно зарядить тело положительным электричеством?

10. Что называется относительной диэлектрической проницаемостью?

Любое вещество или тело, окружающее нас, обладает определенными электрическими свойствами. Это объясняется молекулярной и атомной структурой: наличием заряженных частиц, находящихся во взаимно связанном или свободном состоянии.

Когда на вещество не действует никакое внешнее электрическое поле, то эти частицы распределяются так, что уравновешивают друг друга и во всем суммарном объеме не создают дополнительного электрического поля. В случае приложения извне электрической энергии внутри молекул и атомов возникает перераспределение зарядов, которое ведет к созданию собственного внутреннего электрического поля, направленного встречно внешнему.

Если вектор приложенного внешнего поля обозначить «Е0», а внутреннего - «Е"», то полное поле «Е» будет складываться из энергии этих двух величин.

В электричестве принято делить вещества на:

    проводники;

    диэлектрики.

Такая классификация существует издавна, хотя она довольно условна потому, что многие тела обладают другими или комбинированными свойствами.

Проводники

В роли проводников выступают среды, имеющие в наличии свободные заряды. Чаще всего проводниками выступают металлы, ведь в их структуре всегда присутствуют свободные электроны, которые способны перемещаться внутри всего объема вещества и, одновременно, являются участниками тепловых процессов.

Когда проводник изолирован от действия внешних электрических полей, то в нем создается баланс положительных и отрицательных зарядов из ионных решеток и свободных электронов. Это равновесие сразу разрушается при внесении - благодаря энергии которого начинается перераспределение заряженных частиц и возникают несбалансированные заряды положительных и отрицательных величин на внешней поверхности.

Это явление принято называть электростатической индукцией . Возникшие при ней заряды на поверхности металлов именуют индукционными зарядами .

Образованные в проводнике индукционные заряды формируют собственное поле Е", компенсирующее действие внешнего Е0 внутри проводника. Поэтому значение полного, суммарного электростатического поля скомпенсировано и равно 0. При этом потенциалы всех точек как внутри, так и снаружи одинаковы.


Полученный вывод свидетельствует, что внутри проводника, даже при подключенном внешнем поле, отсутствует разность потенциалов и нет электростатических полей. Этот факт используется при экранировании - применении способа электростатической защиты людей и чувствительного к наведенным полям электрооборудования, особенно высокоточных измерительных приборов и микропроцессорной техники.


Экранированная одежда и обувь из тканей с токопроводящими нитями, включая головной убор, используется в энергетике для защиты персонала, работающего в условиях повышенной напряженности, создаваемой высоковольтным оборудованием.

Диэлектрики

Так называют вещества, обладающие изоляционными свойствами. Они имеют в своем составе только связанные между собой, а не свободные заряды. У них все положительные и отрицательные частицы скреплены внутри нейтрального атома, лишены свободы передвижения. Они распределены внутри диэлектрика и не перемещаются под действием приложенного внешнего поля Е0.

Однако, его энергия все же вызывает определенные изменения в структуре вещества - внутри атомов и молекул изменяется соотношение положительных и отрицательных частиц, а на поверхности вещества возникают излишние, несбалансированные связанные заряды, образующие внутреннее электрическое поле Е". Оно направлено встречно приложенной извне напряженности.

Это явление получило название поляризации диэлектрика . Оно характеризуется тем, что внутри вещества проявляется электрическое поле Е, образованное действием внешней энергии Е0, но ослабленное противодействием внутренней Е".

Виды поляризации

Она внутри диэлектриков бывает двух видов:

1. ориентационной;

2. электронной.

Первый тип имеет дополнительное название дипольной поляризации. Он присущ диэлектрикам со смещенными центрами у отрицательных и положительных зарядов, которые образуют молекулы из микроскопических диполей - нейтральной совокупности из двух зарядов. Это характерно для воды, диоксида азота, сероводорода.

Без действия внешнего электрического поля у таких веществ молекулярные диполи ориентируются хаотичным образом под влиянием действующих температурных процессов. При этом в любой точке внутреннего объема и на внешней поверхности диэлектрика нет электрического заряда.

Эта картина изменяется под влиянием приложенной извне энергии, когда диполи немного изменяют свою ориентацию и на поверхности возникают области не скомпенсированных макроскопических связанных зарядов, образующих поле Е" со встречным направлением к приложенному Е0.


При такой поляризации большое влияние на процессы оказывает температура, вызывающая тепловое движение и создающая дезориентирующие факторы.

Электронная поляризация, упругий механизм

Она проявляется у неполярных диэлектриков - материалов другого вида с молекулами, лишенными дипольного момента, которые под влияние внешнего поля деформируются так, что положительные заряды ориентируются по направлению вектора Е0, а отрицательные - в противоположную сторону.

В итоге каждая из молекул работает как электрический диполь, сориентированный по оси приложенного поля. Они, таким способом, создают на внешней поверхности свое поле Е" со встречным направлением.


У подобных веществ деформация молекул, а, следовательно, и поляризация от воздействия поля извне не зависит от их движения под влиянием температуры. В качестве примера неполярного диэлектрика можно привести метан СH4.

Численное значение внутреннего поля обоих видов диэлектриков по величине вначале изменяется прямо пропорционально возрастанию внешнего поля, а затем, при достижении насыщения, проявляются эффекты нелинейного характера. Они наступают тогда, когда все молекулярные диполи выстроились вдоль силовых линий у полярных диэлектриков или произошли изменения структуры неполярного вещества, обусловленные сильной деформацией атомов и молекул от большой приложенной извне энергии.

На практике такие случаи возникают редко - обычно раньше наступает пробой или нарушение изоляции.

Диэлектрическая проницаемость

Среди изоляционных материалов важная роль отводится электрическим характеристикам и такому показателю, как диэлектрическая проницаемость . Она может оцениваться двумя различными характеристиками:

1. абсолютным значением;

2. относительной величиной.

Термином абсолютной диэлектрической проницаемости вещества εa пользуются при обращении к математической записи закона Кулона. Она, в форме коэффициента εа, связывает вектора индукции D и напряженности E.


Вспомним, что французский физик Шарль де Кулон с помощью собственных крутильных весов исследовал закономерности электрических и магнитных сил между небольшими заряженными телами.

Определение относительной диэлектрической проницаемости среды используется для характеристики изоляционных свойств вещества. Она оценивает соотношение силы взаимодействия между двумя точечными зарядами при двух различных условиях: в вакууме и рабочей среде. При этом показатели вакуума принимаются за 1 (εv=1), а у реальных веществ они всегда выше, εr>1.

Численное выражение εr отображается безразмерной величиной, объясняется эффектом поляризации у диэлектриков, используется для оценки их характеристик.

Значения диэлектрической проницаемости отдельных сред (при комнатной температуре)

Вещество ε Вещество ε
Сегнетова соль 6000 Алмаз 5,7
Рутил (вдоль оптической оси) 170 Вода 81
Полиэтилен 2,3 Спирт этиловый 26,8
Кремний 12,0 Слюда 6
Стекло 5-16 Углекислый газ 1,00099
NaCl 5,26 Водяной пар 1,0126
Бензол 2,322 Воздух (760 мм рт. ст.) 1,00057

Диэлектрическая проницаемость

О явлении поляризации судят по значению диэлектрической проницаемости ε. Параметр ε, характеризующий способность материала образовывать емкость, называется относительной диэлектрической проницаемостью.

Слово “относительная” обычно опускается. Надо учесть, что электрическая емкость участка изоляции с электродами, т.е. конденсатора, зависит от геометрических размеров, конфигурации электродов и от структуры материала, образующего диэлектрик этого конденсатора.

В вакууме ε = 1, а любого диэлектрика всегда больше 1. Если С0 - ем-

кость, между обкладками которого находится вакуум, произвольной формы и размеров, а С - емкость конденсатора таких же размеров и формы, но заполненного диэлектриком с диэлектрической проницаемостью ε, то

Обозначив через С0 электрическую постоянную (Ф/м), равную

С0 = 8,854.10-12,

найдем абсолютную диэлектрическую проницаемость

ε’ = ε0 .ε.

Определим величины емкостей для некоторых форм диэлектриков.

Для плоского конденсатора

С = ε0 ε S/h = 8,854 1О-12 ε S/h.

где S - площадь поперечного сечения электрода, м2;

h - расстояние между электродами, м.

Практическое значение диэлектрической проницаемости очень велико. Она определяет не только способность материала образовывать емкость, но и входит в ряд основных уравнений, которые характеризуют физические процессы, протекающие в диэлектрике.

Диэлектрическая проницаемость газов, вследствие их малой плотности (из-за больших расстояний между молекулами) незначительна и близка к единице. Обычно поляризация газа электронная или дипольная, если молекулы полярные. ε газа тем выше, чем больше радиус молекулы. Изменение числа молекул газа в единице объема газа (n) при изменении температуры и давления вызывает изменение диэлектрической проницаемости газа. Число молекул N пропорционально давлению и обратно пропорционально абсолютной температуре.

При изменении влажности диэлектрическая проницаемость воздуха незначительно меняется прямо пропорционально изменению влажности (при комнатной температуре). При повышенной температуре влияние влажности значительно усиливается. Температурная зависимость диэлектрической проницаемости характеризуется выражением

T K ε = 1 / ε (dε / dT).

По этому выражению можно вычислить относительное изменение диэлектрической проницаемости при изменении температуры на 1 0 К - так называемый температурный коэффициент ТК диэлектрической проницаемости.

Значение ТК неполярного газа находится по формуле

T K ε = (ε -1) / dT.

где Т - температура. К.

Диэлектрическая проницаемость жидкостей сильно зависит от их структуры. Значения ε неполярных жидкостей невелики и близки к квадрату показателя преломления света n 2. Диэлектрическая проницаемость полярных жидкостей, которые используются в качестве технических диэлектриков, лежит в пределах от 3,5 до 5, что заметно выше, чем у неполярных жидкостей.

Так поляризация жидкостей, содержащих дипольные молекулы, определяется одновременно электронной и дипольно-релаксационной поляризациями.

Сильнополярные жидкости, характеризуются высоким значением ε из-за их большой проводимости. Температурная зависимость ε в дипольных жидкостях имеет более сложный характер, чем нейтральные жидкости.

Поэтому ε на частоте 50 Гц для хлорированного дифенила (савол) быстро возрастает из-за резкого падения вязкости жидкости, а дипольные

молекулы успевают ориентироваться вслед за изменением температуры.

Уменьшение ε происходит вследствие усиления теплового движения молекул, препятствующего их ориентации в направлении электрического поля.

Диэлектрики по виду поляризации делятся на четыре группы:

Первая группа – однокомпозиционные, однородные, чистые без добавок, диэлектрики, у которых в основном электронная поляризация или плотная упаковка ионов. К ним относятся неполярные и слабополярные твердые диэлектрики в кристаллическом или аморфном состоянии, а также неполярные и слабополярные жидкости и газы.

Вторая группа – технические диэлектрики с электронной, ионной и одновременно с дипольно-релаксационной поляризациями. К ним относятся полярные (дипольные) органические полужидкие и твердые вещества, например масляно-канифольные компаунды, целлюлоза, эпоксидные смолы и композиционные материалы, составленные из этих веществ.

Третья группа – технические диэлектрики с ионной и электронной поляризациями; диэлектрики с электронной, ионной релаксационными поляризациями делится на две подгруппы. К первой подгруппе относятся в основном кристаллические вещества с плотной упаковкой ионов ε < 3,0.

Ко второй подгруппе относятся неорганические стекла и материалы, содержащие стекловидную фазу, а также кристаллические вещества с неплотной упаковкой ионов.

Четвертую группу составляют сегнетоэлектрики, имеющие спонтанную, электронную, ионную, электронно-ионно-релаксационные поляризации, а также миграционную или высоковольтную для композиционных, сложных и слоистых материалов.

4.Диэлектрические потери электроизоляционных материалов. Виды диэлектрических потерь.

Диэлектрическими потерями называют мощность, рассеиваемую в диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика.

Потери в диэлектриках наблюдаются как при переменном напряжении, так и при постоянном, поскольку в материале обнаруживается сквозной ток, обусловленный проводимо­стью. При постоянном напряжении, когда нет периодической поляризации, качество материала характеризуется, как указыва­лось выше, значениями удельных объемного и поверхностного сопротивлений. При пере­менном напряжении необходимо использо­вать какую-то другую характеристику качества материала, так как в этом случае, кроме сквозного тока, возникают дополнитель­ные причины, вызывающие потери в диэлектрике.

Диэлектрические потери в электроизоляционном материале можно характеризовать рассеиваемой мощностью, отнесенной к единице объема, или удельными потерями; чаще для оценки способности диэлектрика рассеивать мощность в электрическом поле пользуются углом диэлектрических потерь, а также тангенсом этого угла.

Рис. 3-1. Зависимость заряда от напряжения для ли­нейного диэлектрика без потерь (а), c потерями (б)



Углом диэлектрических потерь называется угол, дополняющий до 90° угол фазового сдвига между током и напряжением в емкост­ной цепи. Для идеального диэлектрика вектор тока в такой цепи будет опережать вектор напряжения на 90°, при этом угол диэлек­трических потерь будет равен нулю. Чем больше рассеиваемая в диэлектрике мощность, переходящая в теплоту, тем меньше угол фазового сдвига и тем больше угол и его функция tg .

Из теории переменных токов известно, что активная мощность

Ра = UI cos (3-1)

Выразим мощности для последовательной и параллельной схем через емкости Cs и Сp и угол , который является дополнением угла до 90°.

Для последовательной схемы, используя выражение (3-1) и со­ответствующую векторную диаграмму, имеем

P a = (3-2)

tg = C s r s (3-3)

Для параллельной схемы

P a =UI a =U 2 C p tg (3-4)

tg = (3-5)

Приравнивая друг к другу выражения (3-2) и (3-4), а также (3-3) и (3-5) находим соотношения между Сp и Cs и между rp и rs

C p =C s /1+tg 2 (3-6)

r p = r s (1+ 1/ tg 2 ) (3-7)

Для высококачественных диэлектриков можно пренебречь значени­ем tg2 по сравнению с единицей в формуле (3-8) и считать Ср Cs С. Выражения для мощности, рассеиваемой в диэлектрике, в этом случае будут одинаковы для обеих схем:

P a U 2 C tg (3-8)

где Ра - активная мощность, Вт; U - напряжение, В; - угло­вая частота, с-1; С - емкость, Ф.

Сопротивление rр в параллельной схеме, как следует из выражения (3-7), во много раз больше сопротивления rs.Выражение для удельных диэлектрических потерь, т. е. мощности, рассеиваемой в единице объема диэлектрика, имеет вид:

(3-9)

где р - удельные потери, Вт/м3; =2 - угловая частота, с-1, Е -напряженность электрического поля, В/м.

Действительно, емкость между противоположными гранями куба со стороной 1 м будет

С1 = 0 r , реактивная составляющая удельной проводимости

(3-10)

a активная составляющая

Определив каким-либо методом при некоторой частоте параметры эквивалентной схемы исследуемого диэлектрика (Ср и rр или Cs и rs), l общем случае нельзя считать полученные значения емкости и сопротивления присущими данному конденсатору и пользоваться этими данными для расчета угла потерь при другой частоте. Такой расчет может быть сделан только в том случае, если эквивалентная схема имеет определенное физическое обоснование. Так, например, если известно для данного диэлектрика, что потери в нем определя­ются только потерями от сквозной электропроводности в широком диапазоне частот, то угол потерь конденсатора с таким диэлектриком может быть вычислен для любой частоты, лежащей в этом диапазоне

tg =1/ Crp (3-12)

где С и rp - постоянные емкость и сопротивление, измеренные приданной частоте.

Потери в таком конденсаторе, как легко видеть, не зависят от частоты:

Pa=U2/ rp (3-13)

наоборот если потери в конденсаторе обусловливаются главным образом сопротивлением подводящих проводов, а также сопротивлением самих электродов (например, тонкий слой серебра), то рассеиваемая мощность в таком конденсаторе будет возрастать пропор­ционально квадрату частоты:

Pa=U2 C tg =U2 C Crs=U2 2C2rs (3-14)

Из последнего выражения можно сделать весьма важный практический вывод: конденсаторы, предназначенные для работы на вы­сокой частоте, должны иметь по возможности малое сопротивление как электродов, так и соединительных проводов и переходных кон­тактов.

Диэлектрические потери по их особенностям и физической при­роде можно подразделить на четыре основных вида:

1) диэлектрические потери, обусловленные поляризацией;

2) диэлектрические потери, обусловленные сквозной электропроводностью;

ионизационные диэлектрические потери;

диэлектрические потери, обусловленные неоднородностью структуры.

Диэлектрические потери, обусловленные поляризацией, особенно отчетливо наблюдаются в веществах, обладающих релаксационной поляризацией: в диэлектриках дипольной структуры и в диэлектриках ионной структуры с неплотной упаковкой ионов.

Релаксационные диэлектрические потери обусловлены нарушением теплового движения частиц под влиянием сил электрического поля.

Диэлектрические потери, наблюдаемые в сегнетоэлектриках, свя­заны с явлением спонтанной поляризации. Поэтому потери в сегнетоэлектриках значительны при температурах ниже точки Кюри, когда наблюдается спонтанная поляризация. При температурах выше точ­ки Кюри потери в сегнетоэлектриках уменьшаются. Электрическое старение сегнетоэлектрика со временем сопровождается некоторым уменьшением потерь.

К диэлектрическим потерям, обусловленным поляризацией, сле­дует отнести также так называемые резонансные потери, проявля­ющиеся в диэлектриках при высоких частотах. Этот вид потерь с особой четкостью наблюдается в некоторых газах при строго оп­ределенной частоте и выражается в интенсивном поглощении энер­гии электрического поля.

Резонансные потери возможны и в твердых веществах, если частота вынужденных колебаний, вызываемых электрическим полем, сов­падает с частотой собственных колебаний частиц твердого вещества. Наличие максимума в частотной зависимости tg характерно также и для резонансного механизма потерь, однако в данном случае температура не влияет на положение максимума.

Диэлектрические потери, обусловленные сквозной электропроводностью, обнаруживаются в диэлектриках, имеющих заметную объемную или поверхностную проводимость.

Тангенс угла диэлектрических потерь в этом случае можно вычислить по формуле

Диэлектрические потери этого вида не зависят от частоты поля; tg уменьшается с частотой по гиперболическому закону.

Диэлектрические потери, обусловленные электропроводностью, возрастают с температурой по экспоненциальному закону

PaT=Aexp(-b/T) (3-16)

где А,b - постоянные материала. Приближенно формулу (3-16) можно переписать так:

PaT=Pa0exp( t) (3-17)

где PaT - потери при температуре t, °С; Ра0 - потери при температуре 0°С; - постоянная материала.

Тангенс диэлектрических потерь в зависимости от температуры изменяется по тому же закону, который использован для аппроксимации температурной зависимости Ра, так как температурным изменением емкости можно пренебречь.

Ионизационные диэлектрические потери свойственны диэлектрикам и газообразном состоянии; Ионизационные потери проявляются в неоднородных электрических полях при напряженностях, превышающих значение, соответствующее началу ионизации данного газа. Ионизационные потери можно вычислить по формуле

Pa.и=A1f(U-Uи)3 (3-18)

где А1 - постоянный коэффициент; f - частота поля; U - прило­женное напряжение; Uи - напряжение, соответствующее началу ионизации.

Формула (3-18) справедлива при U > Uи и линейной зависи­мости tg от Е. Ионизационное напряжение Uи зависит от давления, при котором находится газ, поскольку развитие ударной ионизации молекул связано с длиной свободного пробега носителей заряда.

Диэлектрические потери, обусловленные неоднородностью струк­туры, наблюдаются в слоистых диэлектриках, из пропитанной бумаги и ткани, в пластмассах с наполнителем, в пористой керамике в миканитах, микалексе и т. д.

Ввиду разнообразия структуры неоднородных диэлектриков и особенностей содержащихся в них компонентов не существует общей формулы расчета диэлектрических потерь этого вида.

Электрическая проницаемость

Электрическая проницаемость является величиной, характеризующей емкость диэлектрика, помещенного между обкладками конденсатора. Как известно, емкость плоского конденсатора зависит от величины площади обкладок (чем больше площадь обкладок, тем больше емкость), расстояния между обкладками или толщины диэлектрика (чем толще диэлектрик, тем меньше емкость), а также от материала диэлектрика, характеристикой которого служит электрическая проницаемость.

Численно электрическая проницаемость равна отношению емкости конденсатора с каким-либо диэлектриком такого же воздушного конденсатора. Для создания компактных конденсаторов необходимо применять диэлектрики с высокой электрической проницаемостью. Электрическая проницаемость большинства диэлектриков составляет несколько единиц.

В технике получены диэлектрики с высокой и со сверхвысокой электрической проницаемостью. Основная их часть - рутил (двуокись титана).

Рисунок 1. Электрическая проницаемость среды

Угол диэлектрических потерь

В статье "Диэлектрики " мы разбирали примеры включения диэлектрика в цепи постоянного и переменного тока. Оказалось, что реальном диэлектрике при работе его в электрическом поле, образованным переменным напряжением, происходит выделение тепловой энергии. Мощность, поглощаемая при этом, называется диэлектрическими потерями. В статье "Цепь переменного тока, содержащая емкость" будет доказано, что в идеальном диэлектрике емкостной ток опережает напряжение на угол, меньший 90°. В реальном диэлектрике емкостной ток опережает напряжение на угол, меньший 90°. На уменьшение угла оказывает влияние ток утечки, называемый иначе током проводимости.

Разность между 90° и углом сдвига между напряжением и током, проходящим в цепи с реальным диэлектриком, называется углом диэлектрических потерь или углом потерь и обозначается δ (дельта). Чаще определяют не сам угол, а тангенс этого угла - tg δ.

Установлено, что диэлектрические потери пропорциональны квадрату напряжения, частоте переменного тока, емкости конденсатора и тангенсу угла диэлектрических потерь.

Следовательно, чем больше тангенс угла диэлектрических потерь, tg δ, тем больше потери энергии в диэлектрике, тем хуже материал диэлектрика. Материалы с относительно большим tg δ (порядка 0,08 - 0,1 и более) являются плохими изоляторами. Материалы с относительно малым tg δ (порядка 0,0001) являются хорошими изоляторами.