Информационно развлекательный портал
Поиск по сайту

Оксиды которые образуют. Оксиды

РАЗДЕЛ II. НЕОРГАНИЧЕСКАЯ ХИМИЯ

7. Основные классы неорганических соединений

7.1. Оксиды

Оксиды - это бинарные соединения элементов с Оксигеном, в которых он проявляет степень окисления - 2. Характерные Признаки оксидов:

степень окисления Кислорода - - 2;

атомы Кислорода не связаны между собой, а соединяются только с атомами других элементов;

атомы элемента, образующего оксид, имеют одинаковую степень окисления 1 .

Графические формулы оксидов

Валентность элементов

Графическая формула

Не все бинарные соединения Кислорода являются оксидами:

Вещество

Формула

Графическая формула

Степень окисления Кислорода

гидроген пероксид

H 2 O 2

H - O - O - H

натрий пероксид

Na 2 O 2

Na-O-O-Na

оксиген флуорид

OF 2

F-O-F

По химическому характеру оксиды разделяют на несолетворні и солетворні.

Несолетворні оксиды - NO , N 2 O , CO , SiO - это оксиды, которые относят к реакционно способных соединений, но во время реакций соли не образуются. Они не реагируют с водой, кислотами и основаниями при обычных условиях (следовательно, к классу оксидов их относят условно).

Солетворні оксиды - это оксиды, которые образуют соли. Солетворні оксиды подразделяют на основные (К 2 O , ВаО, MgO , FeO ), кислотные (SO 2 , SO 3 , N 2 O 5 , P 2 O 5 ) и амфотерные (ZnO , А l 2 O 3 , Cr 2 O 3 , BeO ).

Номенклатура оксидов

Название оксидов состоит из названия элемента, после которой, когда элемент проявляет несколько степеней окисления, в скобках римскими цифрами указывают степень его окисления и добавляют слово «оксид». Например:

К 2 O - калий оксид;

Fe 2 O 3 - феррум(ІІІ) оксид;

С u 2 O - купрум(И) оксид;

MgO - магний оксид;

Р 2 O 5 - фосфор(V ) оксид;

А l 2 O 3 - алюминий оксид;

СО - карбон(II) оксид.

Некоторые, давно известны человеку оксиды имеют и тривиальные названия: СаО - негашеная известь, С O 2 - углекислый газ, SO 2 - сернистый газ.

Получения оксидов

1. Взаимодействие простых веществ (металлов и неметаллов) с кислородом:

2. Окисление сложных веществ:

3. Термическое разложение:

основ:

солей:

амфотерных гидроксидов:

Некоторых кислот:

4. Во время некоторых других реакций:

______________________________________________________

1 Двойной «оксид» ( FeFe 2 ) O 4 содержит Ферум с различными степенями окисления (+2 и +3) и при взаимодействии с кислотными оксидами образует две различные соли.

7.1.1. Основные оксиды

Основные оксиды - это оксиды, гидраты которых являются основаниями. Все основные оксиды являются оксидами металлических элементов, которые обнаруживают невысокие степени окисления (+1, +2). До основных оксидов относятся:

окислы металлических элементов главных подгрупп i И II групп (кроме Be );

оксиды одновалентных элементов, двухвалентных, за исключением BeO , ZnO , Г b О, которые являются амфотерными;

оксиды переходных металлических элементов в низких степенях окисления (NiO , FeO , М n О, С rO ).

Основным оксидам соответствуют основания:

Na 2 O - NaOH

MgO - Mg (OH ) 2

FeO - Fe (OH ) 2

BaO - Ba (OH ) 2

CrO - Cr (OH ) 2

Тип химической связи в основных оксидах преимущественно ионный.

Химические свойства основных оксидов

1. Взаимодействие с кислотами с образованием солей:

2. Взаимодействие с кислотными оксидами с образованием солей:

3. Взаимодействие с водой. Только оксиды щелочных и щелочноземельных металлических элементов взаимодействуют с водой, образуя щелочи:

4. Взаимодействие с амфотерными оксидами. Реакция происходит во время сплавления. Амфотерный оксид в этой реакции проявляет кислотные свойства:

5. Взаимодействие с амфотерными основаниями. Реакция происходит во время сплавления:

Оксиды - это сложные неорганические соединения, состоящие из двух элементов, один из которых кислород (в степени окисления -2).

Например, Na 2 O, B 2 O 3 , Cl 2 O 7 относятся к оксидам. Все перечисленные вещества содержат кислород и еще один элемент. Вещества Na 2 O 2 , H 2 SO 4 , HCl не относятся к оксидам: в первом степень окисления кислорода равна -1, в составе второго не два, а три элемента, а третье вообще не содержит кислорода.

Если вы не понимаете смысл термина "степень окисления", ничего страшного. Во-первых, можно обратиться к соответствующей статье на этом сайте. Во-вторых, даже без понимания этого термина можно продолжать чтение. Временно можете забыть про упоминание о степени окисления.

Получены оксиды практически всех известных на сегодняшний день элементов, кроме некоторых благородных газов и "экзотических" трансурановых элементов. Более того, многие элементы образуют несколько оксидов (для азота, например, их известно шесть).

Номенклатура оксидов

Мы должны научиться называть оксиды. Это очень просто.

Пример 1 . Назовите следующие соединения: Li 2 O, Al 2 O 3 , N 2 O 5 , N 2 O 3 .

Li 2 O - оксид лития,
Al 2 O 3 - оксид алюминия,
N 2 O 5 - оксид азота (V),
N 2 O 3 - оксид азота (III).

Обратите внимание на важный момент: если валентность элемента постоянна, мы НЕ упоминаем ее в названии оксида. Если валентность меняется, следует обязательно указать ее в скобках! Литий и алюминий имеют постоянную валентность, у азота валентность переменная; именно по этой причине названия окислов азота дополнены римскими цифрами, символизирующими валентность.

Задание 1 . Назовите оксиды: Na 2 O, P 2 O 3 , BaO, V 2 O 5 , Fe 2 O 3 , GeO 2 , Rb 2 O. Не забывайте, что существуют элементы как с постоянной, так и с переменной валентностью.

Еще один важный момент: вещество F 2 O правильнее называть не "оксид фтора", а "фторид кислорода"!

Физические свойства оксидов

Физические свойства весьма разнообразны. Обусловлено это, в частности, тем, что в оксидах могут проявляться разные типы химической связи. Температуры плавления и кипения варьируются в широких пределах. При нормальных условиях оксиды могут находиться в твердом состоянии (CaO, Fe 2 O 3 , SiO 2 , B 2 O 3), жидком состоянии (N 2 O 3 , H 2 O), в виде газов (N 2 O, SO 2 , NO, CO).

Разнообразна окраска: MgO и Na 2 O белого цвета, CuO - черного, N 2 O 3 - синего, CrO 3 - красного и т. д.

Расплавы оксидов с ионным типом связи хорошо проводят электрический ток, ковалентные оксиды, как правило, имеют низкую электропроводность.

Классификация оксидов

Все существующие в природе оксиды можно разделить на 4 класса: основные, кислотные, амфотерные и несолеобразующие. Иногда первые три класса объединяют в группу солеобразующих оксидов, но для нас это сейчас несущественно. Химические свойства оксидов из разных классов отличаются весьма сильно, поэтому вопрос классификации очень важен для дальнейшего изучения этой темы!

Начнем с несолеобразующих оксидов . Их нужно запомнить: NO, SiO, CO, N 2 O. Просто выучите эти четыре формулы!

Для дальнейшего продвижения мы должны вспомнить, что в природе существуют два типа простых веществ - металлы и неметаллы (иногда выделяют еще группу полуметаллов или металлоидов). Если вы четко понимаете, какие элементы относятся к металлам, продолжайте читать эту статью. Если есть малейшие сомнения, обратитесь к материалу "Металлы и неметаллы" на этом сайте.

Итак, сообщаю вам, что все амфотерные оксиды являются оксидами металлов, но не все оксиды металлов относятся к амфотерным. Я перечислю наиболее важные из них: BeO, ZnO, Al 2 O 3 , Cr 2 O 3 , SnO. Список не является полным, но перечисленные формулы следует обязательно запомнить! В большинстве амфотерных оксидов металл проявляет степень окисления +2 или +3 (но есть исключения).

В следующей части статьи мы продолжим говорить о классификации; обсудим кислотные и основные оксиды.

Современная энциклопедия

Оксиды - ОКСИДЫ, соединения химических элементов (кроме фтора) с кислородом. При взаимодействии с водой образуют основания (основные оксиды) или кислоты (кислые оксиды), многие оксиды амфотерны. Большинство оксидов при обычных условиях твёрдые вещества,… … Иллюстрированный энциклопедический словарь

Оксид (окисел, окись) бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй… … Википедия

Оксиды металлов - это соединения металлов с кислородом. Многие из них могут соединяться с одной или несколькими молекулами воды с образованием гидроксидов. Большинство оксидов являются основными, так как их гидроксиды ведут себя как основания. Однако некоторые… … Официальная терминология

оксиды - Соединение химического элемента с кислородом. По химическим свойствам все оксиды делятся на солеобразующие (наприме, Na2О, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7) и несолеобразующие (например, СО, N2O, NO, H2O). Солеобразующие оксиды подразделяют на… … Справочник технического переводчика

ОКСИДЫ - хим. соединения элементов с кислородом (устаревшее название окислы); один из важнейших классов хим. веществ. О. образуются чаще всего при непосредственном окислении простых и сложных веществ. Напр. при окислении углеводородов образуются О.… … Большая политехническая энциклопедия

Основные факты

Основные факты - Нефть - это горючая жидкость, представляющая собой сложную смесь из углеводородов. Различные типы нефти существенно различаются по химическим и физическим свойствам: в природе она представлена и в виде черного битумного асфальта, и в форме… … Нефтегазовая микроэнциклопедия

Основные факты - Нефть - это горючая жидкость, представляющая собой сложную смесь из углеводородов. Различные типы нефти существенно различаются по химическим и физическим свойствам: в природе она представлена и в виде черного битумного асфальта, и в форме… … Нефтегазовая микроэнциклопедия

Оксиды - соединение химического элемента с кислородом. По химическим свойствам все оксиды делятся на солеобразующие (например, Na2O, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7) и несолеобразующие (например, СО, N2O, NO, H2O). Солеобразующие оксиды… … Энциклопедический словарь по металлургии

Книги

  • , Гусев Александр Иванович. Нестехиометрия, обусловленная наличием структурных вакансий, широко распространена в твердофазных соединениях и создает предпосылки для неупорядоченного или упорядоченного распределения…
  • Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле , Гусев А.И.. Нестехиометрия, обусловленная наличием структурных вакансий, широко распространена в твердофазных соединениях и создает предпосылки для неупорядоченного или упорядоченного распределения…

Если вы в школе не увлекались химией, вы вряд ли с ходу вспомните, что такое оксиды и какова их роль в окружающей среде. На самом деле это довольно распространенный тип соединения, который наиболее часто в окружающей среде встречается в форме воды, ржавчины, углекислого газа и песка. Также к оксидам относятся минералы - вид горных пород, имеющий кристаллическое строение.

Определение

Оксиды - это химические соединения, в формуле которых содержится как минимум один атом кислорода и атомы других химических элементов. Оксиды металлов, как правило, содержат анионы кислорода в степени окисления -2. Значительная часть Земной коры состоит из твердых оксидов, которые возникли в процессе окисления элементов кислородом из воздуха или воды. В процессе сожжения углеводорода образуется два основных оксида углерода: монооксид углерода (угарный газ, СО) и диоксид углерода (углекислый газ, CO 2).

Классификация оксидов

Все оксиды принято делить на две большие группы:

  • солеобразующие оксиды;
  • несолеобразующие оксиды.

Солеобразующие оксиды - химические вещества, в которых помимо кислорода содержатся элементы металлов и неметаллов, которые образуют кислоты при контакте с водой, а соединяясь с основаниями - соли.

Солеобразующие оксиды в свою очередь подразделяются на:

  • основные оксиды, в которых при окислении второй элемент (1, 2 и иногда 3-валентный металл) становится катионом (Li 2 O, Na 2 O, K 2 O, CuO, Ag 2 O, MgO, CaО, SrO, BaO, HgO, MnО, CrO, NiО, Fr 2 O, Cs 2 O, Rb 2 O, FeO);
  • кислотные оксиды, в которых при образовании соли второй элемент присоединяется к отрицательно заряженному атому кислорода (CO 2 , SO 2 , SO 3 , SiO 2 , P 2 O 5 , CrO 3 , Mn 2 O 7 , NO 2 , Cl 2 O 5 , Cl 2 O 3);
  • амфотерные оксиды, в которых второй элемент (3 и 4-валентные металлы или такие исключения, как оксид цинка, оксид бериллия, оксид олова и оксид свинца) может стать как катионом, так и присоединиться к аниону (ZnO, Cr 2 O 3 , Al 2 O 3 , SnO, SnO 2 , PbO, PbO 2 , TiO 2 , MnO 2 , Fe 2 O 3 , BeO).

Несолеобразующие оксиды не проявляют ни кислотных, ни основных, ни амфотерных свойств и, как следует из названия, не образуют солей (CO, NO, NO 2 , (FeFe 2)O 4).

Свойства оксидов

  1. Атомы кислорода в оксидах обладают высокой химической активностью. Благодаря тому, что атом кислорода всегда заряжен отрицательно, он образует устойчивые химические связи практически со всеми элементами, что обуславливает широкое многообразие оксидов.
  2. Благородные металлы, такие как золото и платина, ценятся из-за того, что они не окисляются естественным путем. Коррозия металлов образуется в результате гидролиза или окисления кислородом. Сочетание воды и кислорода лишь ускоряет скорость реакции.
  3. В присутствии воды и кислорода (или просто воздуха) реакция окисления некоторых элементов, к примеру, натрия, происходит стремительно и может быть опасна для человека.
  4. Оксиды создают защитную оксидную пленку на поверхности. В качестве примера можно привести алюминиевую фольгу, которая благодаря покрытию из тонкой пленки оксида алюминия, подвергается коррозии значительно медленнее.
  5. Оксиды большинства металлов имеют полимерную структуру, благодаря чему не разрушаются под действием растворителей.
  6. Оксиды растворяются под действием кислот и оснований. Оксиды, которые могут реагировать как с кислотами, так и с основаниями, называются амфотерными. Металлы, как правило, образуют основные оксиды, неметаллы - кислотные оксиды, а амфотерные оксиды получаются из щелочных металлов (металлоиды).
  7. Количество оксида металла может сократиться под действием некоторых органических соединений. Такие окислительно-восстановительные реакции лежат в основе многих важных химических трансформаций, таких как детоксикация препаратов под воздействием P450 энзимов и производство этиленоксида, из которого потом производят антифриз.

Тем, кто увлекается химией, будут интересны также следующие статьи.

В природе существует три класса неорганических химических соединений: соли, гидроксиды и оксиды. Первые являются соединениями атома металла с кислотным остатком, к примеру, СІ-. Вторые подразделяются на кислоты и основания. Молекулы первых из них состоят из катионов Н+ и кислотного остатка, например, SO 4 -. Основания же имеют в своем составе катион металла, к примеру, К+, и анион в виде гидроксильной группы ОН-. А оксиды, в зависимости от своих свойств, делятся на кислотные и основные. О последних мы и расскажем в этой статье.

Определение

Основные оксиды — это вещества, состоящие из двух химических элементов, одним из которых обязательно является оксиген, а вторым — металл. При добавлении воды к веществам этого типа образуются основания.

Химические свойства основных оксидов

Вещества данного класса в первую очередь способны вступать в реакцию с водой, вследствие которой получается основание. Для примера можно привести следующее уравнение: СаО + Н 2 О = Са(ОН) 2 .

Реакции с кислотами

Если основные оксиды смешать с кислотами, можно получить соли и воду. К примеру, если к оксиду калия добавить хлоридную кислоту, получим хлорид калия и воду. Уравнение реакции будет выглядеть таким образом: К 2 О + 2НСІ = 2КСІ + Н 2 О.

Взаимодействие с кислотными оксидами

Такого рода химические реакции приводят к образованию солей. Например, если к оксиду кальция добавить углекислый газ, получим карбонат кальция. Данную реакцию можно выразить в виде следующего уравнения: СаО + СО 2 = СаСО 3 . Подобного рода химическое взаимодействие может произойти только под воздействием высокой температуры.

Амфотерные и основные оксиды

Эти вещества также могут взаимодействовать между собой. Это происходит, потому что первые из них имеют свойства как кислотных, так и основных оксидов. В результате подобных химических взаимодействий образуются сложные соли. Для примера приведем уравнение реакции, которая происходит при смешивании оксида калия (основного) с оксидом алюминия (амфотерным): К 2 О + АІ 2 О 3 = 2КАІО 2 . Полученное при этом вещество называется алюминат калия. Если смешать те же реагенты, но еще и добавить воду, то реакция пройдет следующим образом: К 2 О + АІ 2 О 3 + 4Н 2 О = 2К. Вещество, которое образовалось, называется тетрагидроксоалюминат калия.

Физические свойства

Разнообразные основные оксиды весьма отличаются друг от друга по физическим свойствам, однако все они в основном при нормальных условиях пребывают в твердом агрегатном состоянии, имеют высокую температуру плавления.

Давайте рассмотрим каждое химическое соединение по отдельности. Оксид калия выглядит как твердое вещество светло-желтого цвета. Плавится при температуре +740 градусов по шкале Цельсия. Оксид натрия представляет собой бесцветные кристаллы. Превращаются в жидкость при температуре +1132 градуса. Оксид кальция представлен белыми кристаллами, которые плавятся при +2570 градусах. Диоксид железа выглядит как черный порошок. Принимает жидкое агрегатное состояние при температуре +1377 градусов Цельсия. Оксид магния похож на соединение кальция — это также кристаллы белого цвета. Плавится при +2825 градусах. Оксид лития представляет собой прозрачные кристаллы с температурой плавления +1570 градусов. Данное вещество обладает высокой гигроскопичностью. Оксид бария выглядит так же, как и предыдущее химическое соединения, температура, при которой оно принимает жидкое состояние, чуть выше — +1920 градусов. Оксид ртути — порошок оранжево-красного цвета. При температуре +500 градусов по Цельсию данное химическое вещество разлагается. Оксид хрома — это порошок темно-красной расцветки с такой же температурой плавления, как и у соединения лития. Оксид цезия обладает такой же окраской, как и ртути. Разлагается под воздействием солнечной энергии. Оксид никеля — кристаллы зеленого цвета, превращаются в жидкость при температуре +1682 градуса по шкале Цельсия. Как видите, физические свойства всех веществ данной группы обладают многими общими чертами, хотя и имеют некоторые различия. Оксид купрума (меди) выглядит как кристаллы, обладающие черной окраской. В жидкое агрегатное состояние переходит при температуре +1447 градус по Цельсию.

Как добывают химические вещества этого класса?

Основные оксиды можно получить путем проведения реакции между металлом и кислородом под воздействием высокой температуры. Уравнение такого взаимодействия выглядит следующим образом: 4К + О 2 = 2К 2 О. Второй способ получения химических соединений данного класса — разложение нерастворимого основания. Уравнение можно записать так: Са(ОН) 2 = СаО + Н 2 О. Для осуществления подобного рода реакции необходимы специальные условия в виде высоких температур. Кроме того, основные оксиды также образуются при разложении определенных солей. Примером может служить такое уравнение: СаСО 3 = СаО + СО 2 . Таким образом, образовался еще и кислотный оксид.

Использование основных оксидов

Химические соединения данной группы находят широкое применение в различных отраслях промышленности. Далее рассмотрим использование каждого из них. Оксид алюминия применяют в стоматологии для изготовления зубных протезов. Его также используют при производстве керамики. Оксид кальция является одним из компонентов, участвующих в изготовлении силикатного кирпича. Также он может выступать в роли огнеупорного материала. В пищевой промышленности это добавка Е529. Оксид калия — один из ингредиентов минеральных удобрений для растений, натрия — используется в химической промышленности, в основном при получении гидроксида этого же металла. Оксид магния также применяют в пищевой отрасли, в качестве добавки под номером Е530. Кроме того, он является средством против повышения кислотности желудочного сока. Оксид бария применяется в химических реакциях в качестве катализатора. Диоксид железа используют в производстве чугуна, керамики, красок. Он также является пищевым красителем по номером Е172. Оксид никеля придает стеклу зеленый цвет. Кроме того, он используется в синтезе солей и катализаторов. Оксид лития — один из компонентов в производстве некоторых видов стекла, он повышает прочность материала. Соединение цезия выступает в роли катализатора для проведения некоторых химических реакций. Оксид купрума, как и некоторые другие, находит свое применение в изготовлении специальных видов стекла, а также для получения чистой меди. При производстве красок и эмалей он используется в качестве пигмента, придающего синий цвет.

Вещества данного класса в природе

В естественной среде химические соединения этой группы встречаются в виде минералов. В основном это кислотные оксиды, но среди других также они встречаются. К примеру, соединение алюминия — корунд.

В зависимости от присутствующих в нем примесей, он может быть различного цвета. Среди вариаций на основе АІ 2 О 3 можно выделить рубин, который имеет красную расцветку, и сапфир — минерал, обладающий синей окраской. Это же химическое вещество можно встретить в природе и в виде глинозема. Соединение купрума с оксигеном встречается в природе в виде минерала тенорита.

Заключение

В качестве вывода можно сказать, что все вещества, рассмотренные в данной статье, обладают похожими физическими и аналогичными химическими свойствами. Они находят свое применение во многих отраслях промышленности — от фармацевтической до пищевой.